

Journal of Alloys and Compounds 404-406 (2005) 47-50

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Studies of P-C isotherms in RNi₅-H (R: La, Pr, Nd, Sm, Gd, Tb and Dy) systems

H. Senoh^{a,*}, N. Takeichi^a, T. Kiyobayashi^a, H. Tanaka^a, H.T. Takeshita^b, T. Oishi^b, N. Kuriyama^a

^a Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan

^b Department of Materials Science and Engineering, Faculty of Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan

Received 31 May 2004; received in revised form 30 August 2004; accepted 16 November 2004 Available online 14 July 2005

Abstract

We have investigated the hydrogenation and dehydrogenation properties of binary RNi₅ (R: La, Pr, Nd, Sm, Gd, Tb and Dy) intermetallic compounds in the pressure range of 0.1–35 MPa and temperature range of 223–298 K. Pressure–composition isotherms demonstrated that as the atomic number of R increased in RNi₅–H systems, the single pressure plateau (LaNi₅) split into two plateaux (PrNi₅, NdNi₅, SmNi₅ and GdNi₅), and then into three plateaux (TbNi₅ and DyNi₅), indicating the presence of two hydrides (β_2 and γ_2 phases) and then three hydrides (β_3 , γ_3 and δ_3 phases). The β_3 – γ_3 and γ_3 – δ_3 phase transitions in the TbNi₅–H system corresponded, respectively, to the α_2 – β_2 and β_2 – γ_2 transitions in the RNi₅–H (R: Pr, Nd, Sm and Gd) systems having two plateaux. © 2005 Elsevier B.V. All rights reserved.

Keywords: Hydrogen storage materials; Intermetallics; Gas-solid reactions

1. Introduction

Several types of intermetallic compounds have been proposed as hydrogen storage materials. The pressure–composition (P-C) isotherm is an important property in intermetallic compound–hydrogen systems [1]. Some intermetallic compounds can absorb hydrogen with a pressure plateau corresponding to the phase transition between solid solution and hydride.

For a hydrogen supply medium, a reversible hydrogen storage capacity above 0.1 MPa is necessary for intermetallic compounds. An increase in hydrogen pressure improves the capacity because it induces a new phase transition. At approximately 150 MPa, Lakner et al. found the third phase transition between $LaCo_5H_6$ and $LaCo_5H_9$ [2], which shows the largest hydrogen storage capacity for CaCu₅-type compounds.

The plateau pressure (P_p) of rare earth (R)-based CaCu₅type compounds is logarithmically related to the unit cell volume (V) of the compounds ($\ln P_p \propto V$) [3]. The V of RNi₅ compounds decreases with increasing atomic number of R due to the lanthanide contraction, suggesting an increase in plateau pressure. However, the $\ln P_p \propto V$ relation is only valid for elements between La and Gd in RNi₅–H systems.

In our previous reports [4–6], we evaluated the P-C isotherms in RNi₅–H systems (R: La, Pr, Nd, Sm, Gd, Tb and Dy) and found linear correlation between ln P_p and V in these systems. Only portions of plateaux on dehydrogenation confirm to the regularity, the relations between plateaux on hydrogenation and dehydrogenation remain uncertain, especially for hydrogenation in the TbNi₅–H system. In this study, we investigated the plateaux in the TbNi₅–H system and compared the phase transitions in this system with the other RNi₅–H systems.

^{*} Corresponding author. Tel.: +81 72 751 9653; fax: +81 72 751 9629. *E-mail address:* h.senoh@aist.go.jp (H. Senoh).

 $^{0925\}text{-}8388/\$$ – see front matter @ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2004.11.112

2. Experimental details

Processes for preparation of binary RNi₅ intermetallic compounds (R: La, Pr, Nd, Sm, Gd, Tb and Dy) by arc melting have been described previously [4–6]. Prior to measurement of the *P*–*C* isotherms, the sample ingots were crushed and sieved to obtain particles of 75 μ m under Ar atmosphere, and activated several times by cooling to 196 K under H₂ at 35 MPa until the amounts of absorbed and desorbed hydrogen stopped changing. We measured the *P*–*C* isotherms in RNi₅–H systems in the pressure range of 0.1–35 MPa and temperature range of 223–298 K at least twice using different sample batches to confirm reproducibility of the isotherm.

3. Results and Discussion

Fig. 1 shows the pressure–composition (P-C) isotherms in lanthanide (R) series for RNi5-H systems. One reversible pressure plateau between LaNi₅ solid solution (α_1 phase) and LaNi₅H₆ hydride (β_1 phase) splits into two plateaux with increasing atomic number of R, indicating the presence of two hydrides having compositions of RNi₅H₃₋₄ and RNi₅H₆₋₇ (β_2 and γ_2 phases) together with one solid solution (α_2 phase) [4,5]. The first pressure plateau corresponds to the $\alpha_2 - \beta_2$ phase transition and the second plateau to the $\beta_2 - \gamma_2$ transition. Although the second plateau in SmNi₅-H and GdNi5-H systems are scarcely distinct at 298 K, these systems at 223 K possess the hydrogenation properties qualitatively similar to those of the PrNi5-H and NdNi5-H systems. Partial measurements of P-C isotherms indicate that both $\alpha_2 - \beta_2$ and $\beta_2 - \gamma_2$ transitions allow reversible changes in the hydrogen content with small hysteresis between hydrogenation and dehydrogenation branches.

On going from Gd to Dy in the RNi₅–H systems, three specific dehydrogenation properties can be seen [6]: (1)

the pressure of first plateau corresponding to H/RNi₅ ≈ 2.5 increases; (2) the second plateau tends to disappear; (3) the flat, first plateau splits and gives rise to a new plateau at low hydrogen content. On hydrogenation the pressure of first plateau in TbNi₅–H system is highest in the RNi₅–H systems, and the hysteresis at the level of H/RNi₅ = 2.5 in the TbNi₅–H system is largest in this series. The *P*–*C* isotherm in this system shows two plateaux upon hydrogenation (TbNi₅H_{0.5–3.3} and TbNi₅H_{3.6–4.2}) in contrast to three plateaux on dehydrogenation. These results differ from those in other RNi₅–H systems exhibiting two well-separated plateaux.

On hydrogenation and dehydrogenation, a partial P-Cisotherm in the TbNi₅-H system was obtained. Fig. 2 shows this isotherm together with the original P-C isotherm taken from Fig. 1 for comparison. The partial P-C isotherm starts at the point H/TbNi₅ = 3.5 on the hydrogenation branch of the original P-C isotherm. With decreasing hydrogen pressure, the hydrogen content nearly does not decrease until the original dehydrogenation isotherm is reached, suggesting that a reversible phase transition exists above H/TbNi₅ = 3.5(i.e., the second plateau on hydrogenation corresponds to the third plateau on dehydrogenation in the original P-Cisotherm). As the hydrogen pressure starts increasing after the decrease below the second plateau on dehydrogenation, the hydrogen content H/TbNi₅ \approx 1.3 remains nearly unchanged. Subsequently, a dramatic increase in hydrogen content occurs above 2.0 MPa, revealing another plateau. This novel plateau on hydrogenation occurs at all temperatures in the large hysteresis region of the original P-Cisotherm. Eventually, the partial P-C isotherm returns to the starting point on the hydrogenation branch of the original isotherm.

These *P*–*C* isotherms demonstrate that the TbNi₅–H system contains three phase transition steps among one hydrogen solid solution (α_3) and three types of hydride (β_3 ,

Fig. 1. Pressure-composition isotherms on hydrogenation (empty symbols) and dehydrogenation (filled symbols) in RNi₅-H (R: La, Pr, Nd, Sm, Gd, Tb and Dy) systems at 298 K (a) and 223 K (b).

Fig. 2. Partial pressure–composition isotherm on dehydrogenation (filled symbols) and hydrogenation (empty symbols) in TbNi₅–H system at 223 K together with the P-C isotherm (original) shown in Fig. 1(b).

 γ_3 and δ_3). A schematic representation of phase transitions on the P-C isotherm is shown in Fig. 2. On hydrogenation, two plateaux corresponding to the $\alpha_3 - \gamma_3$ and $\gamma_3 - \delta_3$ phase transitions appear, while three plateaux on dehydrogenation corresponding to the $\delta_3 - \gamma_3$, $\gamma_3 - \beta_3$ and $\beta_3 - \alpha_3$ phase transitions also exist. The $\beta_3 - \gamma_3$ phase transition does not appear on the original P-C isotherm unless the hydrogen pressure increases starting from the P-T region of the β_3 phase formed previously on dehydrogenation. The $\alpha_3 - \gamma_3$ phase transition on hydrogenation due to overlap of the $\alpha_3 - \beta_3$ and $\beta_3 - \gamma_3$ transitions in this system is similar to that in the LaNi₅–H system, in which the $\alpha_1 - \beta_1$ transition practically contains the $\alpha_1 - \beta'_1$ and $\beta'_1 - \beta_1$ transitions (β'_1 : intermediate phase) at room temperature [7,8]. Despite the complex phase transitions on hydrogenation and dehydrogenation, the P-C isotherm in the TbNi₅-H system is reversible. Analogous phase transitions are also observed in DyNi5-H system [9].

The enthalpy (ΔH) and entropy (ΔS) corresponding to the phase transitions are evaluated from van't Hoff plots of each plateau pressure and summarized in Table 1. The ΔH value to the $\gamma_3-\beta_3$ transition on dehydrogenation is consistent with that estimated by extrapolation of the values in the TbNi_{5-x}Al_x-H (x = 0.5, 1.0) systems [10] to x = 0. For comparison of phase transitions in the TbNi₅-H system with those

Fig. 3. Plateau pressures at 223 K on hydrogenation (empty symbols) and dehydrogenation (filled symbols) in RNi_5-H (R: Pr, Nd, Sm, Gd, Tb and Dy) systems as a function of unit cell volume of RNi_5 compounds.

Fig. 4. Enthalpies of phase transitions on hydrogenation (empty symbols) and dehydrogenation (filled symbols) in RNi_5 –H (R: La, Pr, Nd, Sm, Gd, Tb and Dy) systems.

in other RNi₅–H systems [4–6,9], the plateau pressures at 223 K determined on both hydrogenation and dehydrogenation are summarized in Fig. 3 and the ΔH values in Fig. 4. As seen from Fig. 3, the points of the γ_3 – β_3 and β_2 – α_2 transitions form an approximately linear dependence and the

Table 1

Enthalpy (ΔH) and entropy (ΔS) corresponding to phase transitions on hydrogenation and dehydrogenation in TbNi₅–H system

	Phase transition	$\Delta H (\mathrm{kJ}\mathrm{mol}^{-1})$	$\Delta S (\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1})$	
TbNi ₅ Hydrogenation Dehydrogenation	$\alpha_3 - \gamma_3$	-12.8 ± 0.2	-91.8 ± 0.9	This study
	$\beta_3 - \gamma_3$	-16.5 ± 0.2	-102.3 ± 0.9	This study
	$\beta_3 - \alpha_3$	-31.2 ± 0.6	-141.6 ± 2.4	This study
	$\gamma_3 - \beta_3$	-20.7 ± 0.1	-115.0 ± 0.4	This study
Dehydrogenation		-27.3	-112.4	Ref. [10]
Dehydrogenation		-33.9	113.4	Ref. [10]
	Hydrogenation Dehydrogenation Dehydrogenation Dehydrogenation	Phase transitionHydrogenation $\alpha_3 - \gamma_3$ $\beta_3 - \gamma_3$ $\beta_3 - \alpha_3$ Dehydrogenation $\beta_3 - \alpha_3$ $\gamma_3 - \beta_3$ DehydrogenationDehydrogenationDehydrogenation	Phase transition $\Delta H (kJ mol^{-1})$ Hydrogenation $\alpha_3 - \gamma_3$ -12.8 ± 0.2 $\beta_3 - \gamma_3$ -16.5 ± 0.2 Dehydrogenation $\beta_3 - \alpha_3$ -31.2 ± 0.6 $\gamma_3 - \beta_3$ -20.7 ± 0.1 Dehydrogenation -27.3 Dehydrogenation -33.9	$\begin{tabular}{ c c c c c c c } \hline Phase transition & ΔH (kJ mol^{-1})$ & ΔS (J mol^{-1} K^{-1})$ \\ \hline Hydrogenation & $\alpha_3-\gamma_3$ & -12.8 ± 0.2 & -91.8 ± 0.9 \\ $\beta_3-\gamma_3$ & -16.5 ± 0.2 & -102.3 ± 0.9 \\ \hline Dehydrogenation & $\beta_3-\alpha_3$ & -31.2 ± 0.6 & -141.6 ± 2.4 \\ $\gamma_3-\beta_3$ & -20.7 ± 0.1 & -115.0 ± 0.4 \\ \hline Dehydrogenation & -27.3 & -112.4 \\ \hline Dehydrogenation & -33.9 & 113.4 \\ \hline \end{tabular}$

^a The data were estimated at fixed hydrogen content (H/TbNi_{5-x}Al_x = 1.5).

point of the $\beta_3-\gamma_3$ transition does not deviate much from the straight line drawn through the $\alpha_2-\beta_2$ transition points. This suggests that the $\beta_3-\gamma_3$ and $\gamma_3-\beta_3$ transitions in the TbNi₅– H system correspond, respectively, to the $\alpha_2-\beta_2$ and $\beta_2-\alpha_2$ transitions in the RNi₅–H systems having two plateaux. Similarly, the $\gamma_3-\delta_3$ and $\delta_3-\gamma_3$ transitions correspond to the $\beta_2-\gamma_2$ and $\gamma_2-\beta_2$ transitions.

4. Conclusion

We have measured the detailed P-C isotherms in TbNi₅–H system with RNi₅–H (R: La, Pr, Nd, Sm, Gd and Dy) systems for comparison. The TbNi₅–H system contained three phase transition steps among one hydrogen solid solution (α_3) and three types of hydride (β_3 , γ_3 and δ_3). The P-C isotherm in this system showed two pressure plateaux ($\alpha_3-\gamma_3$ and $\gamma_3-\delta_3$) on hydrogenation, in contrast to three pressure plateaux ($\delta_3-\gamma_3$, $\gamma_3-\beta_3$ and $\beta_3-\alpha_3$) on dehydrogenation. The $\beta_3-\gamma_3$ phase transition appeared on the hydrogenation of the P-C isotherm when the hydrogen pressure increased starting from the β_3 phase formed previously on dehydrogenation. Despite the complex phase transitions on hydrogenation and dehydrogenation, the P-C isotherm in this system has reversible change in the hydrogen content.

Acknowledgement

The work was supported by the Japan Science and Technology Agency.

References

- L. Schlapbach, Topics in Applied Physics, 63. Bd., Springer-Verlag, Berlin, pp. 1–10.
- [2] J.F. Lakner, F.S. Uribe, S.A. Steward, J. Less-Common Met. 72 (1980) 87–105.
- [3] M.H. Mendelsohn, D.M. Gruen, A.E. Dwight, Nature 269 (1977) 45– 47.
- [4] H. Senoh, N. Takeichi, H.T. Takeshita, H. Tanaka, T. Kiyobayashi, N. Kuriyama, Mater. Trans. 44 (2003) 1663–1666.
- [5] H. Senoh, T. Kiyobayashi, N. Takeichi, H. Tanaka, Q. Xu, H.T. Takeshita, M. Toyauchi, T. Oishi, N. Kuriyama, Mater. Trans. 45 (2004) 292–295.
- [6] H. Senoh, N. Takeichi, H.T. Takeshita, H. Tanaka, T. Kiyobayashi, N. Kuriyama, Mat. Sci. Eng. B 108 (2004) 96–99.
- [7] S. Ono, K. Nomura, E. Akiba, H. Uruno, J. Less-Common Met. 113 (1985) 113–117.
- [8] H. Brodowsky, K. Yasuda, K. Itagaki, Z. Phys. Chem. 179 (1993) 45– 55.
- [9] H. Senoh, N. Takeichi, H. Tanaka, T. Kiyobayashi, M. Toyauchi, H.T. Takeshita, T. Oishi, N. Kuriyama, J. Alloys Compd. 389 (2005) 182– 185.
- [10] Z. Blazina, B. Sorgic, A. Drasner, J. Mater. Sci. Lett. 17 (1998) 1585– 1587.